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ABSTRACT.—To determine whether the herbicide, atrazine, affects the stress hormone corticosterone, we exposed Osteopilus
septentrionalis (Cuban Treefrog) tadpoles to four concentrations of atrazine and two controls (water and acetone) for three time

durations (4, 28, and 100 h). Atrazine concentration, but not exposure duration, had significant nonlinear effects on whole-body
corticosterone. Relative to controls, intermediate concentrations of atrazine (10.2 and 50.6 lg/L) tended to lower corticosterone, whereas

the lowest (0.1 lg/L) and highest atrazine concentrations (102 lg/L) elevated corticosterone. These results indicate that atrazine exposure

might dysregulate corticosterone, a hormone integral to vertebrate immunity, neurogenesis, and health.

Amphibians are important biological indicators of environ-
mental health and are one of the most threatened vertebrate
taxa on the planet (Stuart et al., 2004). Agrochemical pollution is
a major concern for amphibians because many breed in and use
waterways associated with pesticide use (e.g., near agriculture
fields and orchards; see Boone et al., 2008; Johan et al., 2009),
regularly exposing them to pesticides during development
(Rohr et al., 2004). Additionally, some pesticides can persist in
the environment, such as atrazine, one of the most commonly
used pesticides in the United States that has a half-life on the
order of months (deNoyelles et al., 1989; Solomon et al., 1996).
Therefore, amphibians near agricultural areas may experience
chronic exposure to some pesticides during development.

Although exposure to pesticides has been linked to mortality
of non–target organisms (Rohr et al., 2008a; McMahon et al.,
2012), sublethal effects (Rohr et al,. 2006; Rohr et al., 2013), such
as hormonal dysregulation (i.e., abnormal or impaired regula-
tion; Larson et al., 1998; Rohr et al,. 2003; Hayes et al,. 2006;
Rohr and McCoy, 2010) and altered disease risk (Rohr et al.,
2008b), appear to be more common than direct mortality. For
example, exposure to many pesticides can alter levels (increase
or decrease) of circulating glucocorticoid stress hormones in
vertebrates, such as corticosterone (CORT), the glucocorticoid in
amphibians (Larson et al., 1998; Goulet and Hontela, 2003;
Hayes et al., 2006; McMahon et al., 2011). The effects of
glucocorticoids on organismal health often depend on whether
stressor exposure is acute or chronic (Sapolsky et al., 2000):
short-term CORT elevations can be protective (Davis et al.,
2008), whereas long-term can cause immune suppression,
muscle atrophy, and reduced neurogenesis (Martin, 2009). Thus,
chronically elevated CORT is often detrimental, but too little
CORT can also compromise health (Wingfield and Sapolsky,
2003). More important, if glucocorticoid dysregulation occurs
during development, the hypothalamic–pituitary–adrenal
(HPA) regulatory axis for CORT, as well as immune responses
(Plotsky and Meaney, 1993; Matthews, 2002; Belden and
Kiesecker, 2005; Glaser and Kiecolt-Glaser, 2005; Martin et al.,
2010), and many other traits, can be enduringly compromised
(Martin, 2009). Therefore, any dysregulation of CORT, whether
a reduction or an increase, could affect organismal health
(Woods and Wilson, 2014).

Exposure to the herbicide, atrazine (chemical class triazine),
can dysregulate CORT in amphibians (Larson et al., 1998;
Goulet and Hontela, 2003; Hayes et al., 2006; Hernández et al.,
2014). For example, exposure to a mixture of pesticides,
including atrazine, caused a fourfold increase in CORT in
Xenopus laevis (Hayes et al., 2006) and atrazine-modulated
CORT in Ambystoma tigrinum (Larson et al., 1998) and Rhinella
marina (Hernández et al., 2014). We do not know how general
the effects of atrazine are in terms of pesticide concentration,
however, nor how the duration of atrazine exposure affects
CORT. To address these gaps in the literature, we exposed
Osteopilus septentrionalis (Cuban Treefrog) tadpoles to naturally
relevant concentrations of atrazine for different durations of
times and quantified levels of CORT thereafter.

MATERIALS AND METHODS

Experimental Design.—Osteopilus septentrionalis eggs were col-
lected from pesticide-free, outdoor wading pools (1.5 m diameter,
30 cm deep) at the University of South Florida (USF) Botanical
Gardens (28803.5370N 082825.4100W). Tadpoles were housed
individually in 500-mL mason jars filled with 300 mL of artificial
spring water (ASW; Cohen et al., 1980) until all tadpoles reached
Gosner stage 25 (Gosner, 1960). The jars were randomly dosed
with 1 mL of a stock of one of four atrazine (technical grade,
purity>98%) concentrations (final water concentrations: 0.1, 10.2,
50.6, or 102 lg/L atrazine; N = 6, 8, 6, 6, respectively; Table 1) or
one of two controls (water or acetone solvent (500 ng/L acetone)
for atrazine; N = 16/control treatment). The atrazine stock
concentration was 106 lg/L, verified by ELISA (Abraxis, Inc.,
Warminster, PA) and diluted in series to create working
concentrations; nominal concentrations are reported throughout
the manuscript. The highest atrazine concentration tested (102
lg/L) was the Estimated Environmental Concentration (EEC)
according to GENEEC software, v. 2 (U.S. Environmental
Protection Agency). We chose the EEC as our highest concentra-
tion to be sure that all concentrations used in the study were
naturally relevant and because the effects of atrazine at the EEC
may impact pesticide regulations and usage. The four atrazine
concentrations and two controls were crossed with three
exposure durations: 4, 28, and 100 h (for sample sizes, see Table
1). We expected short-term exposure to atrazine to dysregulate
CORT less than longer-term exposure. Thus, we had the largest
samples sizes in the 4-h exposure treatment because we expected
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the smallest effect sizes there; other differences in sample size
were caused by mortality that occurred before euthanasia.

Corticosterone Extraction and Measurement.—We followed the
methods described in McMahon et al. (2011) to extract and
quantify CORT in tadpoles. After atrazine exposure, tadpoles
were euthanatized by placing them directly into a beaker of 10%
benzocaine sitting in dry ice. This process immediately euthan-
atized and flash froze the animals with a handling time of less
than 5 sec. Each tadpole was weighed (6 0.0001 g) and
homogenized (Power Gen 125 homogenizer, Thermo-Fisher
Scientific, Inc., Waltham, MA). Whole tadpole homogenates were
extracted twice with a 7:3 ethyl ether-petroleum ether cocktail (4
mL per 1 mL homogenate). The supernatant was removed from
the water fraction by freezing the water and decanting the ether
cocktail that was collected in a glass vial (13 · 100 mm) and
dried under a pure nitrogen stream at 408C. The petroleum ether
helped separate the fats into a monolayer allowing us to collect
the steroid layer effectively, and the freezing cycle helped to
precipitate out excess fat and other unwanted compounds. To
determine extraction efficiency, we added 20uL of diluted 250 lCi
tritiated CORT stock solution (PerkinElmer NET-399) equivalent
to a decay rate of 2,000 cpm, to each sample prior to extraction.
Following sample reconstitution (see below), we used a
scintillation counter to measure the amount of tritiated steroid
remaining in each reconstituted sample. We then compared this
value to reference sample readings of nonextracted 20uL working
solutions of tritiated CORT (i.e., 2,000 cpm) to determine the
percent of CORT that was lost or bound by lipids during the
extraction process. Recoveries varied among individual tadpoles,
but recoveries were consistent among replicates of the same
tadpole homogenate. Mean (6 SE) extraction efficiency was 48 6

0.03%, and CORT results were adjusted based on individual
extraction efficiencies.

We used a CORT EIA kit to quantify hormone levels extracted
from each sample (Assay Designs: cat. number 900-097, Ann
Arbor, MI). Immediately before running the assay, dried
samples were reconstituted in 500 lL of Assay Buffer 15, mixed

with 12.8 lL of steroid displacement buffer, and vortexed
vigorously. This reconstituted sample extract (50 lL) was then
added to wells (along with enzyme conjugate and other
reagents) and incubated for 1 h. Next, the plate was washed
three times, and then the last reagents were added to elicit
colorimetric reactions for visualization. Plates were read at 405
nm with a 96-well ELISA plate reader (Bio-Tek, Winooski, VT).
Samples were run in duplicate following the manufacturer’s
instructions for the EIA kit, and standard curves for each run of
the assay (N = 2) spanned a 32–20,000 page range. Interassay
variation was 11.6%, and intra-assay variation was 7.6%.

Data Analysis.—To identify the best predictors of log10-
transformed whole body CORT levels, we compared six
statistical models (with least trimmed squares): 1) the intercept
only; 2) atrazine duration only (log10 transformed); 3) atrazine
concentration only (log10 [conc. +1] transformed); 4) duration +
concentration; 5) duration + concentration + concentration2; 6)
duration + concentration + concentration2 + concentration3.
Model selection and averaging was conducted using the model.sel
function in the ‘‘MuMIn’’ package of R statistical software (R
Development Core Team, 2010). Once the best model was
identified, ANOVA tables were generated using the ‘‘car’’
package of R. We used the information theoretic approach for
the statistics, because it allowed us to use model selection to
choose the most appropriate model for the data. We did not
calculate a LOEC50, because there were clear nonlinear responses,
which would violate the assumptions of LOEC calculations.

RESULTS

There was never a difference between the two control
treatments (water and solvent) for any of the end points
analyzed (P > 0.05); thus, we pooled them into one control
treatment for all subsequent analyses. There was no effect of
treatment (chemical, chemical concentration, or exposure
duration) on tadpole stage or weight (P > 0.05 for all factors).

Model selection and averaging revealed the third order
polynomial model had the largest likelihood and weight
(69.4%) and a DAICc of 3.46 from the next model (Table 2). A
significant third order model (atrazine as a categorical variable:
F4,21 = 4.414, P = 0.0096; log concentration3: F1,31 = 7.666, P =
0.0094) indicated that whole body CORT levels were non-
linearly affected by atrazine concentration (Fig. 1). Indeed,
relative to control tadpoles, tadpoles exposed to the two
intermediate concentrations of atrazine tended to have lower
CORT levels and tadpoles exposed to the lowest and highest
atrazine concentrations tended to have higher CORT levels (Fig.
1).

In contrast to concentration, whole body CORT was not
significantly affected by atrazine exposure duration (F2,21 =

TABLE 1. Sample sizes for tadpoles exposed to different
concentrations of atrazine for different durations of time.

Atrazine

concentration (lg/L)

Duration (h) Overall

sample size/

concentration4 28 100

0 (water) 8 4 4 16
0 (acetone) 8 4 4 16
0.1 3 1 2 6
10.2 3 2 3 8
56 3 1 2 6
102 3 2 1 6

TABLE 2. Results of model selection and model averaging for a series of statistical models that considered the effects of log10 atrazine exposure
duration and linear, quadratic, and cubic effects of log10 atrazine concentration (plus 1 because of zero concentration) on log10 whole body
corticosterone levels in Osteopilus septentrionalis tadpoles.

Model no. Intercept Duration

Concentration

(conc.) Conc.2 Conc.3 df Log likelihood AICc DAICc Model weight

6 1.977 0.09783 2.579 -4.267 1.522 6 -15.859 46.1 0 0.694
1 2.054 – – – – 2 -22.634 49.6 3.46 0.123
5 2.017 0.09922 -0.7845 0.408 – 5 -19.43 50.5 4.41 0.077
2 1.97 0.07024 – – – 3 -22.412 51.5 5.34 0.048
3 2.078 – -0.03208 – – 3 -22.549 51.7 5.61 0.042
4 1.994 0.07058 -0.03248 – – 4 -22.323 53.7 7.61 0.015
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0.618, P = 0.549; duration · atrazine: F8,21 = 1.451, P = 0.234).

Given our sample size and a correlation coefficient between

duration and CORT of 0.217, we only had 34% power to detect

an effect of exposure duration. Detection of a significant effect of

exposure duration with a power of 80% would have required an

approximate 4.5-fold increase in our sample size.

DISCUSSION

The early toxicologist Paracelsus emphasized that dose makes

the poison; however, many modern dose-response studies are

discovering this to be an over simplification, because nonlinear

dose responses have been repeatedly reported (Alker et al,.

2001; Rohr et al., 2006; McMahon et al., 2011, 2013; Vandenberg

et al.; 2012). To add to this growing list, we discovered that

naturally occurring concentrations of atrazine nonlinearly

affected CORT levels in O. septentrionalis tadpoles; low and

high levels of atrazine seemed to elevate CORT. This nonlinear

pattern can manifest through multiple mechanisms, which we

did not investigate here but may include the body responding

differently to different contaminant concentrations (Welshons et

al., 2003; Vandenberg et al., 2012) and dysregulation of negative

feedback systems, hormone receptors, and hormone production

(Cyr and Romero, 2009).

Support for a nonlinear effect of atrazine exposure on CORT

also comes from the work of Larson et al. (1998), where A.
tigrinum larvae exposed to 75lg/L atrazine had reduced CORT

compared to those exposed to either 0 and 250lg/L of atrazine,

very similar to the patterns we observed in O. septentrionalis.

Atrazine also has shown a nonlinear dose response relationship

with other hormones, such as testosterone (Vandenberg et al.,

2012). Other pesticides also have affected CORT nonlinearly. For

example, exposure to naturally relevant concentrations of the

fungicide chlorothalonil induced a nonlinear effect on CORT in

O. septentrionalis tadpoles similar as we observed for atrazine

(McMahon et al., 2011).

Elevated CORT does not typically have an immediate lethal
impact on tadpoles. Indeed, we did not see any tadpole
mortality. However, elevated CORT exposure can cause
detrimental immunomodulation. For example, in Xenopus
laevis (African Clawed Frogs) mitogen-stimulated proliferation
of lymphocytes was reduced by elevated endogenous gluco-
corticoids (Rollins-Smith and Blair, 1993). Therefore, given that
we show atrazine dysregulates CORT, we were not surprised
that one of the most consistent effects of atrazine exposure on
amphibians and fish is altered immunity and elevated
infection prevalence and burden (Rohr and McCoy, 2010).
Additionally, sustained or early-life exposure to elevated
glucocorticoids can permanently alter the HPA axis (Plotsky
and Meaney, 1993; Glaser and Kiecolt-Glaser, 2005). The HPA
axis helps control the neuroendocrine system, regulating not
only stress responses like CORT expression and immune
function (Silverman et al., 2005) but also normal body
processes, like digestion and protein transport across tissue
(Plotsky and Meaney, 1993; Matthews, 2002; Belden and
Kiesecker, 2005; Glaser and Kiecolt-Glaser, 2005; Denver,
2009; Martin, 2009; Martin et al., 2010). More specifically, in
amphibians, corticosteroids interact with the thyroid hormone
to mediate amphibian metamorphosis, and changes in hor-
mone levels can influence timing of and size at metamorphosis
(Denver, 2009), which can influence adult fitness (Denver, 2009;
Rohr and Palmer, 2013).

We decided to measure whole body CORT in this experiment
because it is the most relevant metric of predicted CORT
interference by atrazine as it encapsulates all circulating and
adrenal reservoirs of corticosterone. We had to euthanize the
tadpoles and due to these experimental design restrictions, we
could not quantify how atrazine-altered CORT levels would
impact long-term fitness. More research is needed to understand
the long-term fitness impacts of atrazine and abnormally
induced CORT responses (but see Kaiser et al., 2015). Hence,
this work emphasizes the need to further study the effects of
naturally occurring concentrations of pesticides on the physiol-
ogy of changed CORT responses impacting amphibian health
and population dynamics.
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